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Solution of a Linearized Kinetic Model for an 
Ultrarelativistic Gas 
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A linearized model of the Boltzmann equation for a relativistic gas is shown to 
be reducible, in the ultrarelativistic limit and for (1 + 1 )-dimensional problems, 
to a system of three uncoupled transport equations, one of which is well known. 
A general method for solving these equations is recalled, with a few new details, 
and applied to the solution of two boundary value problems. The first of these 
describes the propagation of an impulsive change in a half space and is shown 
to give an explicit example of the recently proved result that no signal can 
propagate with speed larger than the speed of light, according to the relativistic 
Boltzmann equation. The second problem deals with steady oscillations in a half 
space and illustrates the meaning of certain recent results concerning the disper- 
sion relation for linear waves in relativistic gas. 
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1. I N T R O D U C T I O N  

In a recent paper/1) a proof was given that infinitesimal disturbances, 
traveling in a gas otherwise in equilibrium, propagate, according to the 
relativistic Boltzmann equation, at a speed less than the speed of light c. 
Further research was devoted to the study of the dispersion relation, i.e., 
the relation between frequency and wave number according to relativistic 
theory. (2m For this purpose relativistic kinetic models were introduced. In 
Ref. 3 the model proposed in Ref. 2, which appeared to be the most direct 
analog of the classical BGK model, Is'7) was shown to have a peculiar 
behavior, in that the discrete spectrum was imbedded in a continuous spec- 
trum in the low-frequency limit. This led (3) to the conjecture that a con- 
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stant value of the collision frequency is not a reasonable equivalent of the 
analogous assumption for the traditional BGK model. Accordingly it was 
suggested that a value of that frequency proportional to p0 (in the reference 
frame of the unperturbed gas) should be taken, if pO denotes the time com- 
ponent of the molecule momentum. After submitting the present paper, a 
referee pointed out to the author that the same model had been proposed 
much earlier by Anderson and Witting] 8) who applied it to the com- 
putation of transport coefficients. 

The model was studied in detail in Ref. 4 where the phase speeds and 
attenuation rates of thermal, sound, and shear waves were computed as 
functions of the frequency. The results were in agreement with the expec- 
tations. 

In particular, the dispersion relation for each kind of wave turned out 
to have solution if and only if the frequency was less than a critical value of 
co C (of the order of the collision frequency). This circumstance was already 
present in the classical case,  (9'11'6'7) where Sirovich and Thurber suggested 
to look for the roots of the analytically continued dispersion relation and 
the present author gave a meaning to this procedure./11,6'7) In the 
relativistic case, however, the analytically continued dispersion relation 
leads to phase speeds larger than c, thus violating the basic result of Ref. I. 

Since the analytically continued dispersion relation has only an 
approximate meaning and is significant only in the neighborhood of the 
critical frequency oJ~., it appears of interest to investigate the speed of 
propagation of disturbances in a boundary value problem. For this pur- 
pose, one considers a gas occupying a half space, whose boundary 
undergoes an oscillation of either mechanical or thermal nature and looks 
for the corresponding solution of a linearized kinetic model. In the case of a 
classical gas, this kind of problem can be solved analitically for both 
shear (H) and sound (j2) waves. The procedure is much more complicated in 
the second case and this explains why the problem had been previously 
treated in a partly numerical manner. The procedure Of Ref. 12 could be 
extended, in principle, to thermal waves although this does not appear to 
have been done. 

The treatment of relativistic waves propagating in a gas occupying a 
half, space appears to be extremely complicated in the general case. It is 
feasible, however, for a high temperature gas, i.e., in the so-called ultra- 
relativistic limit, as will be shown in this paper. A particularly appealing 
feature of the  results of this paper is that the study of one-dimensional 
problems connected with the kinetic model studied in Ref. 4 is reduced to 
transport equations well known in radiative transfer (~2~ and neutron 
transport. (13~ In Section 2 this reduction will be performed, while Section 3 
is devoted to recalling certain results on the simplest transport equation 
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obtained in the previous section. Analogous results for the other equations 
are indicated in Section 6. Applications to initial value problems and 
propagation of oscillations follow. 

2. THE T R A N S P O R T  EQUATIONS IN THE ULTRARELATIVISTIC 
L IMIT  

The kinetic model to be employed to describe the time evolution of the 
molecular distribution function is a relativistic version of a velocity depen- 
dent Krook model. (15'16'6'7) This model was proposed in Refs. 3 and 4, but, 
as mentioned in the previous section, had been introduced much earlier by 
Anderson and Witting (8) to illustrate the computation of relativistic trans- 
port coefficients. The basic equation is 

p= ~ = u~ p ~ s  f )  (2.1) 
( } x -  

where p~ is the four-momentum, x ~ the space-time coordinates, Z" ~s a 
function of the local density and temperature having the meaning of the 
ratio between a collision frequency for a particle at zero speed, and c, 
f = f ( x  ~, p~) is the distribution and F a Maxwell-Boltzmann distribution 
F =  exp(A + B~ p~) varying from point to point in space-time in such a way 
that 

f u = p ~ ( F - f )  gkco = (2.2) 0 

where 
gr = Y ,  g4 = 1, co = dpldp2dp3/p (2.3) 

In spite of its linear appearance, Eq. (2.1) is highly nonlinear because of 
Eqs. (2.2) and (2.3) as well as of the dependence of Z" on density and tem- 
perature (see Refs. 6 and 7 for a discussion in the classical case). Letting 

f = ,/)(1 +h )  (2.4) 

where 

�9 -- exp(~i + f~p ~ ) (~, 6= constants) (2.5) 

and neglecting higher-order terms in h we obtain the linearized version of 
Eq. (2.1): 

Qh 
p~ - -  = ~p~ + b=p ~ - h) (2.6) 

O x  ~ 
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where a and b ~ are fields in space-time implicitly defined by 

f p~  ( k = 0 ,  1, 2, 3, 4) (2.7) 

and ff is the value of ~ in the unperturbed state. Here and above, as well as 
in the sequel, Greek indices run from 0 to 3 and the signature of space-time 
is taken to be ( - 1 ,  1, I, 1). Further, without any loss of generality, we have 
assumed 6 ~ = 0 for c~ = 1, 2, 3. 

We shall now consider solutions depending on x ~ and x 1, but not 
upon x 2 and x 3, as appropriate for situations where the gas occupies a half 
space, say x I >0 ,  or the region between two parallel planes, say Ix1[ < d/2. 
Then the equation to be solved can be written as follows: 

Oh Oh 
Ox o F- #-~x4 =~(a + b ~ p ~ - h  ) (2.8) 

where 
# = pl/pO (2.9) 

is the speed of a particle in c units (t#] < 1). Again, in complete analogy 
with the classical case, (7) it is possible to separate the shear effects from the 
effects due to longitudinal disturbances. To this end it is sufficient to split h 
as follows: 

h = h l  + h 2 + h  3 (2.10) 

where 

hl = H1h= �89 P2P3)h 

& -- & h  = �88 P 2 ) ( / -  P~)h 

h3 = H3h = ~(I + P 3 ) ( I -  P2)h (2.11) 

I is the identity and P~ denotes the operator reflecting the ath component 
of p~ (here c~ = 1, 2, 3); thus, e.g., P 3 f ( p  1, p2, p3) =f(pJ ,  p2, _p3). 

Note that P~ = L PhPk = PkPh imply 

3 

HkHh = Hk6t,~, ~ Hk = I (2.12) 
k = l  

i.e., in any Hilbert space of functions admitting Pk as symmetries, h is 
decomposed, according to (2.10), into three mutually orthogonal com- 
ponents. 
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Applying the orthogonal projectors H k to Eq. (2.8) we find 

6~hl 6~hl =~(a+bop~ ~ hi )  (2.13) 
c~x----- 6 + II •x---5 

Oh2 #h2 
#x o }- II ~ = # ( b 2 p  2 - h2) (2.14) 

ah3 Oh3 
•x--- d --k II ~ x  1 = 6(b 3 p3 _ h3 ) (2.15) 

We remark now that, as a consequence of Eqs. (2.7), a and b~ are related 
to h i ,  h2, h 3 through integrals of the following form: 

l = f h i P ~ 

I o = f hi(p~ 2 q509 

ii = f hi pOp1 ~co 

12 = f h2 pOpZ qbco 

13 = f h 3 p~ (2.16) 

If one introduces as integration variables pO, O, II, where 

p 2 =  [p02(1 _ / / 2 ) _  (mc)211/2 cos 0 

p3 = [pO2(1 - l l 2 ) _  (mc)2] 1/2 sin 0 

mc pl=#pO(pO>/ (1-~2)l/2 ) (2.17) 

then 

pO0) = dpl dp2 dp 3 = p 02 all dp 0 dO (2.18) 

If one introduces the following scalar product for functions of p0 and O, 
depending parametrically on ll: 

fm ;? (f '  g) = c/(1 _,2)~2 fgCI'p~ dp~ dO (2.19) 
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one easily sees that one can simplify the equations by splitting h~ in a part 
along pO, flYo ( f i -  - b 0 > 0 ) ,  a part along 1, YI, and a remainder, h~R, 
orthogonal to p0 and 1 according to the scalar product defined in 
Eq. (2.19). While hlR satisfies a simple partial differential equation: 

~hlR 63hlR 
c~x----- 6- -[-/~ ~ = --#hlR (2.20) 

Yo and Y1 satisfy a system of the following form: 

~? Y1 ~? Y1 
c~xO -}- # ~-7x 2 = 6(a - Y1) 

~?Yo ~?Yo 

(2.21) 

(2.22) 

where, as said before, 

h~ = fiYop ~ + Y~ + h~e (2.23) 

Yo and Y1 depend, of course, on x ~ x ~, it. The expressions of a, bo, b~ can 
be easily computed in terms of Yo and Y~ but contain/~ in a complicated 
way, typically taken to the power of 1/2 in the combination (1 _#2)1/2. If, 
however, we consider the ultrarelativistic limit when 

mc 2 
e = flmc - (2.24) 

k s T  

(T temperature of the unperturbed gas, k B Boltzmann constant) goes to 
zero, we can easily express the terms a, bo, and b~. In fact if we let 
p = f l  lw, the variable w goes from e/(1 _#2)1/a to oo in Eq. (2.19); letting 
e ~ 0, the lower limit of integration disappears and a great semplification 
ensues. In fact, one obtains 

lfl 
Y~ dl~ a~-2 l 

bl 3 1 3 * =~]~ f 1Yll2d~-~j~ f 1Yo~ld~ (2.25) 

The last equation indicates that a better unknown in place of Iio is 

Z = Yo + ~ YI (2.26) 
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In fact in terms of Z and Yx (that will be simply denoted by Y), one 
obtains 

~?Y 07Y [-1 f l  y ( # , ) d # ' -  Y] (2.27) 
ax ~ +/~0-TTx~=SL2 -1 

Z ( # ' ) d # '  +~l~  # ' Z ( # ' ) d l ~ ' -  Z (2.28) g x o ~- li -5-~x ~ = ~ ~ ~ 

It is remarkable that the equations for Y and Z are very simple: 
Equation (2.27) is the one-speed transport equation with isotropic scatter- 
ing well known from radiative transfer (~3) and neutron transport (14) in the 
conservative case. Equation (2.28) is a similar equation containing a 
notable amount of anisotropy in the scattering; actually the coefficient 3 in 
front of the second integral is three times larger than the maximum value 
admissible for a scattering kernel in linear transport. We must remember, 
however, that we are not dealing with the linear Boltzmann equation, but 
with a linearized version of the nonlinear one; the resulting scattering ker- 
nel is by no means bound to be positive. Here, according to a rather stan- 
dard nomenclature, the term linear applies to the transport equation for 
particles moving in a much denser host medium of equilibrium particles, 
while linearized applies to small perturbations from equilibrium when par- 
ticles of the same species collide with each other. (7) 

One may proceed in the same way with h 2 and h3 by letting 

h2 = tiP2 Y2, h3 = tiP3 Y3 (2.29) 

to find that Y2 and Y3 satisfy the same equation, having the form 

0x0 + #~-Tx~ = # (1 _~,2)  W ( # ' ) d / -  W (2.30) 
1 

Equation (2.27) describes thermal waves, Eq. (2.30) shear waves, 
Eq. (2.28) sound waves; this is easily seen by the fact that Eq. (2.28) has 
two conservation equations. The form of the equations (2.27) and (2.28) is 
simpler than that of the classical limit (~ --+ oo); the latter leads, of course, 
to the traditional BGK model. Accordingly it is somewhat easy to study 
the solution of the half space problems in the ultrarelativistic limit, as will 
be indicated in the next few sections. 

3. THE ELEMENTARY SOLUTIONS OF THE LAPLACE- 
T R A N S F O R M E D  EQUATION FOR Y 

The general structure of the solutions of Eq. (2.27) was investigated by 
Bowden and Williams, (~7) who extended a treatment due to Case (18) and 
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applicable to the steady solutions. It is remarkable that, at the same time 
and independently, the same approach was used (19) to extend this author's 
approach to the classical BGK model, (2~ that had been, in turn, inspired 
by Case's method. 

In order to simplify the notation we introduce nondimensional time 
and space variables 

t =x~ x = x l #  (3.1) 

so that Eq. (2.27) becomes 

0Y t3Y 1 r l  
~ - - } - + ~ x + Y = ~  J Y(x, t, #') @' (3.2) 

1 

Let us take the Laplace transform of this equation. Without loss of 
generality a zero initial value for Y will be assumed; in fact from the 
properties of the resulting homogeneous equation, a particular solution of 
the inhomogeneous one, which would result from a nonzero initial con- 
dition, can always be constructed. Thus in every case we are reduced to 
treat the homogeneous equation: 

- 0 ~ -  1 ('1 
(s+ 1 ) Y + # ~ x  = 5  J-1 Y(x, s, # ' )d# '  (3.3) 

where Y denote the Laplace transform of Y. The same equation (with 
s = i~o) is obtained when studying steady oscillations. It is to be noted that 
our s + 1 corresponds to s of Ref. 17. Also Ref. 17 discusses a slightly more 
general case containing a parameter, resulting equal to unity in our case. 
The form of Eq. (3.3) suggests looking for separated variable solutions of 
the form 

Y(x, s, t~)= e -(s+ l)x/vfv(tz, s) (3.4) 

where f satisfies 

- -  - -  f v ( # ' ,  s )  df l '  ( 3 . 5 )  1 - f v ( l~ ,  s )  2 ( s  + 1 1 

These solutions are usually called elementary solutions, according to the 
terminology used by Case. (~8) 

The right hand side of Eq. (3.5) does not depend on/~ and can be nor- 
malized to unity. Accordingly, we are led to a division problem, typical in 
the theory of generalized functions: if the factor ( 1 - # I v )  is nonzero, i.e., 
v q~ ( -1,  1 ), fv(#) is an ordinary function given by 

V 
f~(#, s ) = -  (3.6) 

V - - J /  
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with the normalization condition: 

1 ('t I Y d# = 1 (3.7) 
2 ( s + l ) J  I V - #  

o r  

s + l = v t a n h  1(l/v) (3.8) 

where the branch of tanh- l (1 /v)  to be chosen is such that it is zero when 
the argument is zero (i.e., v ~ oe) and is continuous in the complex plane 
cut along the real interval ( - 1 ,  1). 

If, on the contrary, v e ( - 1 ,  1), f~(~) must be considered to be a 
generalized function or distribution, and Eq. (3.5) gives 

v 
f ~ ( ~ t , s ) = P - - + 2 ( v , s ) b ( v - # )  [v~ ( - 1 ,  1)] (3.9) 

V--k t  

where 

2(v, s) = 2(s + 1) - v log - -  
l + v  

(3.1o) 
1- -v  

and the symbol P means the Cauchy principal value. Eq. (3.9) gives the 
generalized eigensolutions corresponding to the continuous spectrum 
( - l < v < l ) .  

The next step is to study the values of v for which Eq. (3.8) is satisfied, 
i.e., for any given value of s the zeros of the function 

f2(v, s) = s + 1 - v tanh- l (1 /v)  (3.11) 

This function is continuous in the complex plane of v cut along the real 
interval ( - 1 ,  1). In the limiting case when v tends to a value on the cut, the 
discrete spectrum merges into the continuous spectrum and the zeros 
satisfy to 

v.  l + v  
s +  1 = = l o g = ~ _ + =  iv 

2 1 - v  2 
I r E  ( - 1 ,  1)] (3.12) 

This equation is satisfied on a curve C in the complex plane of the variable 
s lying all at the right of the straight line Re s = - 1  tangent to the curve at 
s = 1, and between the asymptotes I m s  = +~/2 (see, e.g., Ref. 14, p. 177). 

Using this curve and the principle of the argument it is easy to see that 
Eq. (3.8) has no solutions if s is at the left of the curve C (s c L), two 
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opposite solutions • [not lying in the interval ( - 1 ,  1)] when s is at the 
right of C (s~R). When s is on C the two opposite roots are v = +_2In Im s  
and are on the interval ( - 1 ,  1). The corresponding eigensolutions will be 
denoted by f +  (#, s). 

It is easy to prove, following standard methods, (ls'19) that generalized 
eigenfunctions corresponding to different values of v (in either the discrete 
or continuous spectrum) are orthogonal with respect to the (indefinite) 
weight #: 

fl #fv(p,s)f~,(#,s)d#=O, vCv' (3.13) 
--1 

If we include the case v = v' we find 

N+(s)-  #[f+(p,s)]Zd# = +_2Vo s s eR  (3.14) 

for the discrete spectrum and 

f' _ # f v ( # , s ) s  ' )  (3.15) 

for the continuous one. This is a symbolic formula whose meaning is the 
following. If we expand a given function as an integral of the eigenfunctions 
of the continuous set (in the sense of distributions), then in order to com- 
pute the coefficient of the expansion A(v), we can use Eq. (3.15) formally, 
i.e., exchanging freely the order of integrations to obtain the correct result. 
A rigorous treatment would involve use of the Poincar6 Bertrand 
formula. (2~) For a more complete discussion on this point see, e.g., Ref. 14, 
pp. 69-71. 

The set of generalized functions {fv(#): v ( -1 ,  1) u { _+Vo} } are a com- 
plete set for sufficiently well-behaved functions Y(#) defined on ( - 1 ,  1). A 
sufficient condition is that #Y(#) obey an H condition on ( - 1 ,  1). (2~) This 
means that Y is H61derian in any closed subinterval of ( - 1 ,  1) and is 
HSlderian on the closed interval ( - 1 ,  1) when multiplied by (1--#2) 6 
(0 < 6 < 1). The proof is standard. (~8'2~ 

There are more general completeness theorems for subintervals 
(#1, #2) where the set needed is /fv(#):  v(#1, #2)}. The most interesting 
case refers to the interval (0, 1). 

In this case it is important to quote the rule to compute the coef- 
ficients of the representation of Y(#) in terms of the set {f~(#): v e (0, 1)). 
When s e L one has 

f2 Y(#)= A(v,s)f~(p,s)dv ( 0 < # < 1 )  (3.16) 
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;~(v, s) 
A(v, s) = [ 2(v, s ) ]  2 + 7~2v 2 Y(v) X2(v,  s)[,~(v, s) + ~iv] 

f2 #X2(#, s) Y(#) d# (3.17) 
• P ~ s ) - - - 7 ~ i #  #- -v  

Here X~ (#, s ) =  lim~ ~ 0 X(#- ie, s) and the following function of the com- 
plex variable z has been introduced: 

XA(Z' S)=exP I2---~-ii f] G(#' z d#] (3.18) 

where 

G(#, s)= log [ )4#, s) + zci#] 
L2(#, }]-~-]~#J 

(3.19) 

Here the branch of the logarithm is chosen in such a way that G(#, s) ~ 0 
when # --, 1. 

When s E R we have 

;o Y(#)=Bof+(#,s)+ B(v,s)f~(#,s)dv (0 < # < 1 ) (3.20) 

where 

Bo= f] #Y(#)X~ d#/f~ #X~f+(#) d# 
2(#, s) - 7zi# 2(#, s) - Tci# 

(3.21) 

and 

B(v,s)= ,~(v, s) 
[.~(v, s)] 2 + ~z2v 2 [ r(v) - eof+ (v)] 

1 f #X~(#,s)[Y(#)--Bof+(#)] 
X~(v, s)[)~(v, s)+Tziv] p [)o(#, s)--TripJ(#--v) d# 

(3.22) 

Here Xd(#, s) = l i m ~ o +  Xs(#-ie, s) and 

[ 1 1 a(#, s) d#] 
XB(z, s ) = z  l exp [_2--~ut'fo # - z  (3.23) 

These expressions are obtained by solving in the usual way (21,11) the 
singular equations (3.16) and (3.20). 
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We note that XA and X~ satisfy certain identities such as 

XA(z, s) X A ( - z ,  s) - - -  
t?(z, s) 

~(z, s) 
xB(z, s ) x ~ ( - z ,  s)= (v 2 _ z2) s 

(3.24) 

(3.25) 

where the function (2 is defined by Eq. (3.11). 
These identities can be used to put in real form Eqs. (3.17), (3.21), and 

(3.22). The proof of these identities is straightforward (see, e.g., Ref. 11). 

4. APPLICATION TO THE PROPAGATION OF A SHARP PULSE 

In this section the general method developed in the previous section is 
applied to a typical problem, i.e., that of propagation of an impulsive 
change of temperature at the boundary of a half space x > 0 filled with gas. 
This means that we solve Eq. (3.2) in x > 0 with the following initial and 
boundary conditions: 

Y(O, t, # ) =  1 ( # > 0 )  (4.1) 

Y(x, 0, # ) =  0 (4.2) 

Further Y must be bounded at infinity. 
While the classical case for a transversal velocity change has been 

studied in Ref. 19, the problem of a temperature change has not been 
treated, to this author's knowledge. 

Introducing the Laplace transform of Y leads to Eq. (3.3) with the 
boundary condition 

I'(0, s, g) = 1/s (# > 0) (4.3) 

According to the general method developed in Section 3, the solution 17" 
when s e L can be written as folows: 

ry(x, s, #) A ( v ) e - ( s + l ) x / v f (  = ~ ~,#, s) dv (4.4) 

This expression holds in the half-plane Re s > -1 ;  A(v)  has be taken 
different from zero only for v > 0, because of the condition at infinity. A(v) 
is now evaluated by matching the boundary condition (4.3): 

1 
I' A(v, s)fv(#, s) dv (4.5) - - z  

S J 0  
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According to the general formula (3.17) we can evaluate 

1 1 
A(v, s ) =  (4.6) s X~(v)[;t(v, s) + ~iv] 

where use has been made of the identity 

Xa(z, s) : 1 + s s) - ~zi~t # - z (4.7) 

which follows by means of the Plemelj formulas, in the way indicated in 
Ref. 1t. The expression of A(v, s) can be put in real form by means of 
Eq. (3.24) and the solution Y is given by 

fo' x,,(-v,s)fv(~, s) ~+,~/v Y(x, s, #)-~ 2 [fl(v,s)]~+zt2v z e dv (s~L) (4.8) 

When s ~ R we have 

Y(x,s,#)=-Bof+(g,s)e ~'+~/~~ fj B(v)e-~'+~)~/vf~.(~,s) (4.9) 

where v o must be selected between the two possible values according to the 
condition at infinity; in fact v o will be fixed by 

One can always find one and only one such a v for each s~R/ ( -1 ,  0); in 
fact if s ~ ( - 1 , 0 )  the two values of v satisfying Eq.(3.8) are purely 
imaginary and satisfy the condition given by Eq. (4.10). Accordingly, the 
interval ( - 1 ,  0) is excluded for the moment from our consideration. 

B 0 and B(v) are easily evaluated through the boundary condition (4.3) 
and the general formulas (3.2l) and found to be 

1 
Bo = (4.11 ) SVoXB(Vo, s) 

1 
B(,,) = - (4.12) 

S(Vo - v) X ;  (~)[;t(v, s) + ~iv] 

where use has been made of the identity 

XB(z,s)=f~ ux~(~,s) d~ 

analogous to Eq. (4.7). 

(4.13) 
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Accordingly, 

~(x, s, ~ ) -  
e (s + 1 )x/vo 

s(vo- ~) X~(Vo) f •  ( V o + V ) X . ( - v , s ) L ( u , s )  ~+l~xj~ 
- 2  [2(v,s)]2+n2v2 e dv 

(sER) (4.15) 

Equation (4.8) and (4.14) give two different expressions for 17 according to 
whether s ~ L or s ~ R. However, there is no singularity of 17, as function of 
s, on the curve C which separates L from R. As a matter of fact Eqs. (4.8) 
and (4.14) are the analytic continuation of each other through C. To see 
this, one has first to note that when s crosses C at s = g, Vo(S)~ ~, where 
~ (0, 1) is the real positive value corresponding to g~ C in the parametric 
representation (3.12). Then the following relation, 

X~(z, ~)= -(~-z)  X~(z, x) (~  c) (4.15) 

must be used. Here, of course, XA(z, ~) and X~(z, g) are the limits from L 
and R, respectively, of XA(z,s ) and X~(z,s). Equation (4.15) can be 
obtained directly from Eqs. (3.18) and (3.23) or by the following indirect 
argument. Equations (3.24) and (3.25) give 

XA(Z,g) XA(--Z,g)=XB(Z,g)XB(--Z,g)(~2--Z 2) (gEC) (4.16) 

because f2(z, s) is continuous through C. Hence 

XA(z, x) x~(-z, ~)(~+ ~) 
x~(z, ~)(~-z) xA(-z, ~) (geC)  (4.17) 

The function of z appearing in the left-hand side of this equation is analytic 
in Re z < 0 except, at most, z = 0. The function defined by either side of 
Eq. (4.17) is, accordingly, analytic everywhere. Further this function is 
bounded and hence reduces to a constant because of Liouville's theorem. 
The common value of both sides of Eq. (4.17) is - 1 ,  as is seen by letting 
z ~ oe. Hence Eq. (4.15) follows. 

Having established this, it is a simple matter to see that Eqs. (4.14) 
and (4.7) coincide on C. (Note that [2(v, s)]2+rc2v 2 has a zero at v = 
when s = g.) 

We remark that it is useful to discuss the integral of Y(x, t, #), 

q(x,t)=2fl Y(x,t,/~)+ (4.18) 

which has a simple physical significance (it is related to the temperature) 
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rather then dealing with Y itself. The Laplace transform of q, ~, is easily 
obtained by integrating Eqs. (4.8) and (4.14): 

f~ XA(-v,  s) e (,+l)x/v 
O(x,s)=2(s+ 1) [2(-~,7)]5+7,v , dv (seL)  (4.19) 

O ( x , s )  - 
(s+ 1)e (s + l)x/vo 

S,  o X ~ ( V o )  

2(s+ 1) fo ( v~  (s+l)x/v 
[,~(v, s)] ~ + ~'v ~ 

dv (seR)  

(4.20) 

We can now discuss the singularities of ~(x, s) as a function of s; the 
straight line Re s = -1  appears to be a natural boundary for the analytic 
continuation of ~, because the integral (4.20) does not exist when 
Re s < -1.  Consequently O(x, s) is defined in the half plane Re(s + 1) > 0 
with a cut along the interval ( -1 ,  0) of the real axis. In fact we have not 
defined c~(x, s) on this interval; moreover, when approaching it from below, 
it is seen that Vo(S ) and consequently ~(x, s), suffer a discontinuity, because 
of Eq. (4.10). We finally remark that c~(x, s) behaves as s -1 when s -* 0; in 
fact voXe(vo)--, 1 when s ~ 0  (Vo-~ oo). The pole has residue i. 

We can now invert the Laplace transform to obtain 

1 Fa + ioo 
q(x, t) =~--='|+i~Z~tJ, extgl(X's) ds ( a > 0 )  (4.21) 

where O(x, s) is given by Eq. (4.19) or (4.20) according to s ~ L  or seR.  
Because of the singularities of 0(x, s), it is seen that such a path can be 
deformed to a path indented on the segment ( -1 ,  0) of the real axis and 
along the vertical line Re(s + 1) = 0. Accordingly, 

1 ~ -1 ~/c~ ~ / f O  1 q(x ' t )=l+~i~i~  1 ioo e'~q(x's) d s -  e'tA(x,s) ds (4.22) 

where A(x, s) is the jump of c~(x, s) through the segment ( -1 ,  0) of the real 
axis. This formula is useful to study the long-time behavior of the solution 
(t>> 1, as well as t~>x). It is not hard to see that a sort of diffusive process is 
taking place [note that v ~_ (3s)-1/2 when s ~ 0]. For t ---, o% q --, 1, i.e., the 
entire space has been invaded by the disturbance. 

For short times, however, the situation is quite different. In particular, 
if t < x (i.e., we consider a point located outside the light cone), we can 
evaluate the integral in Eq. (4.21) by closing the path in the half plane 
Re s >  a >0;  in fact IO(x, s)l is bounded by A(a)e ~x, where A(a) is, at 
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most, a function of polynomial growth, when a = Re s--* oo. ~(x, s) does 
not possess singularities for Re s > 0; hence 

q(x, t)=-O ( t < x )  (4.23) 

In other words the wave front produced by the impulsive change at x = 0 
propagates at a speed not larger than c. 

5. APPL ICAT ION TO THE P R O P A G A T I O N  OF FORCED 
W A V E S  IN A HALF SPACE 

In this section we consider a problem strictly related to the one treated 
in the previous section. We consider a gas filling a half space bounded by 
an infinite plane, whose temperature oscillates with a fixed frequency co. 
The system is assumed to be in a steady state when the transients have dis- 
appeared. Accordingly the solution of Eq. (3.2) will have the form 
Y(x, t, I~) = e i~ Y(x, t, #), where l r satisfies 

ico Y + # ~x + Y = 2  f-1 Y(x, I~') dl~' (5.1) 

with the boundary condition 

f '=  1 (~ > 0) (5.2) 

where the amplitude of the vibration, without any loss of generality, has 
been taken to be unity. As before, the solution is required to be bounded at 
infinity. It is easy to remark that 

Y(x, #) = icoY(x, ico, #) (5.3) 

where Ir s,/~) was found in the previous section by solving Eq. (3.3) with 
the boundary condition given by Eq. (4.3). Accordingly the quantity 
defined in Eq. (4.18) can be computed as follows: 

q(x, t) = e'~'O(x) (5.4) 

where 

fo XA( -v ,  ico) +i,o)x/~ 
gt(x)=2ico(1 +ico) EZ(v, ico)]2+rc2v ~e-(1 dv (lcol >co,.) 

O(x) 

(5,5) 

f~ (Vo + v)xe( - v, ico)e -(t +,o~)x/v (1 + ico)e -(~ + ~)x/v0 _ 2ico(1 + ico) dv 
VoXe(Vo) [2(v, ico)]2 + 7z2v 2 

(Icol <coc) (5.6) 
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Here XA and X8 are the functions defined in Section 3, 

coc -~ 1.199678640 (5.7) 

and v 0 is such that 

1 + ico = Vo tanh(1/Vo) (5.8) 

This equation has solution if and only if lcol < coc (see Ref. 4); this 
value, of course, is equal to the ordinate of the intersection of the curve C 
with the imaginary axis of the complex s plane. 

In Ref. 4 the dispersion relation (5.8) was analytically continued 
beyond the critical value to yield solutions for Icol > cot. Here, in analogy 
with Ref. 11, we can give the physical meaning to this procedure. As a mat- 
ter of fact we can consider the complex plane of the variable and deform 
the integration path in Eq. (5.5), provided we keep the end points fixed and 
add the contribution from any pole of the integrand between the old and 
the integration path. Now it is easily seen that, at least for frequencies 
larger but still close to coc, there is one such pole, v0, which satisfies 

2(v0, ico) - nivo = 0 (5.9) 

provided we deform the path into the quadrant R e v > 0 ,  I m v < 0 .  
Equation (5.9) is the analytic continuation of the dispersion relation 
s ico) = 0 for co > co c. Accordingly, Eq. (5.5) takes on a shape similar to 
Eq. (5.6) except for the slight change in the integration path. Thus we 
uncover a discrete term even when no discrete spectrum exists! This term 
will have a physical meaning if it dominates the contribution from the 
remaining integral. This is certainly not true at all distances even at co ~_ coc; 
in fact the less damped contribution from the integral in Eq. (5.6) decays as 
e x, while for co~coc and hence Vol~n/ (2coc)"~_l .31 ,  the discrete term 
decays as e x p [ - ( 1 . 3 1 ) x ] .  Hence the integral dominates over the discrete 
term at large distances. 

Yet, the discrete term might be significantly larger at small and inter- 
mediate distances. We cannot expect, however, this to be true at all the fre- 
quencies, because the root vo of Eq. (5.9) will tend to have a large real part 
(Vo-~ co/n) and hence to uncover it, it will be necessary to deform the path 
in such a way as to produce large contributions from the integral term as 
well. 

In fact, we can consider the analytic continuation rather meaningless 
when Re v0 - 1. Taking into account the fact that Vo -~ 2co/n for co -~ coc and 
Vo "~ co/~z for co ~ o% we can estimate that the analytic continuation will 
loose any meaning for frequencies larger than a second critical value 

822/42/3-4-24 
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between 1.57 and 3.14. This appears to be in a roughly good agreement 
with the numerical results of Ref. 4, indicating that for 0J>2.5 the 
analytically continued dispersion relation gives phase speeds larger than 
the speed of light, in disagreement, not only with physical intuition, but 
also with the general property proved in Ref. 1. 

6. THE ELEMENTARY SOLUTIONS OF THE LAPLACE- 
T R A N S F O R M E D  EQUATIONS FOR Z A N D  W 

A treatment similar to the one expounded in the previous sections can 
be applied to Eqs. (2.28) and (2.30). The second of these equations is dealt 
with in exactly the same way used for Eq. (2.27). In fact, written in non- 
dimensional space and time variables and Laplace transformed, Eq. (2.30) 
takes on the form 

0W 3 f l (s + 1) l~/q- # ~-X = ~ Vv'(x,s,#')(1-1f2)dj (6.1) 
1 

The separate variable solutions are again given by the product of an 
exponential in x times fv(#,s), a function given by Eq. (3.6) or a 
generalized function given by Eq. (3.9). The dispersion relation, Eq. (3.8), 
and the expression of 2(v, s), Eq. (3.10) change, however, into 

s + 1 = (3/2)v(1 - v 2) tanh-l(1/v) + (3/2) v z (6.2) 

[~ 21 1 l + v  (6.3) ,~(v, s) = ( s+  1 ) - 2 v  1----Z~- v log 1 _ v 

As a consequence the curve bounding the region of existence of the con- 
tinuous spectrum is given by 

3 3 l+v+__~_~iv(l_v2 ) s +  [ = ~  v2+~ v ( 1 -  v 2)log 1 - v  (6.4) 

In this case the region inside the curve is heart-shaped and occupies a finite 
part of the complex plane. The curve meets the real axis at s = 0.5 and 
s = -1,  the imaginary axis at Im s "~ 0.9. 

The treatment of general properties and applications parallels the one 
given for Eq. (2.27). 

Slightly more complicated is the case of Eq. (2.28). After putting it in 
nondimensional form, Laplace transforming and looking for separated 
variable solutions, one is faced with 

( ~ )  i f  1 f L( / ,  s) d / +  3 ( s + l )  1 -  f ~ ( # , s ) : ~  , ~#  ~f~( / ' s )# 'd /Y (6.5) 
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The new fact is given by the presence of two integrals in the left-hand 
side. Similar situations were considered in Ref. 11. The best way to deal 
with Eq. (6.5) is to remark that integrating both sides of Eq. (6.5) with 
respect to # from - 1  to 1 gives 

f l s + 1 f l  s f~(#, s) - #f~(#, s) = 0 (6.6) 
--1 V 1 

Hence we can express one of the integrals in terms of the other and rewrite 
Eq. (6.5) in the form 

The dispersion relation now becomes 

(s+ 1)2J tanh ( ! )  
3sv 2 

( s+  1) 2 -  
1 (6.8) 

The boundary of the region where a solution to this dispersion relation 
exists is given by 

-B_+ (B 2 - 4 C )  1/2 
s = 2 (6.9) 

where 

v 1 - v  v ) 
B = l + ( l + 3 v  2) l + ~ l o g ] - ~ v - t - i ~ z  

v 1 1 - v  v 
C = 1 + ~  og ]--~v + i ~ ~ 

(6.10) 

(6.11) 

The curve has a double point at s =  -1  (v = 0). This point separates the 
curve into two parts: a closed path C1 lying in the strip -1  ~< Res ~< 1/4, 
and a curve C2 going to infinity for large values of Re s, in a way similar to 
the curve C met in Section 3. It is to be expected that no discrete spectrum 
exists when s E R, where R is the region at the right of C2. On the other 
hand, two discrete eigenvalues, opposite of each other, should exist when 
s s R, where R2 is R deprived of the region RI bounded by C1, and four 
eigenvalues when s E R1. A detailed study of the shape of C1 and C2, as 
well as of the roots of the dispersion relation (6.8) is beyond the scope of 
the present paper. It can be conjectured, however, that many of the results 
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obta ined  in the previous  sections are valid for Eq. (2.28). This equat ion,  
however,  seems to deserve further considera t ion ,  because it is capable  of 
describing the p r o p a g a t i o n  of sound  waves in a very simple way. 

7. C O N C L U D I N G  R E M A R K S  

We have  shown that  the kinetic  theory of  an ul t rarelat ivis t ic  gas can 
be reduced to the solut ion of three simple uncoupled  equat ions ,  p rov ided  
we a d o p t  a l inearized single re laxat ion  mode l  and  consider  (1 + l ) -d imen-  
sional  problems.  One of these equat ions  has been s tudied in detail ,  t ak ing  
advan tage  of the fact that  m a n y  results are a l ready  available.  The o ther  
two equat ions ,  and  in pa r t i cu la r  the equa t ion  descr ibing sound  waves, 
seem to deserve further considera t ion .  
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